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A model for the porosity dependence of Young's 
modulus in brittle solids based on crack opening 
displacement 

V. D. KRSTIC,  W. H. E R I C K S O N  
Physical Metallurgy Research Laboratories CANMEL Energy, Mines and Resources Canada, 
Ottawa, Canada 

A crack opening displacement concept has been introduced to model the porosity dependence 
of Young's modulus in polycrystalline and single phase solids. In developing the theoretical 
model, it is assumed that each cylindrical cavity possesses radial cracks and spherical pores 
possess annular flaws. When an external stress is applied on such a solid, its elastic response 
is shown to be governed by the pore size, the width of an annular flaw, the number of pores 
(or pore volume fraction) and the flaw to pore size ratio. The validity of the present approach 
is tested against a number of experimental data. 

1. Introduction 
It is well known that the presence of  pores in brittle 
solids strongly affects their elastic, mechanical and 
other properties. So far, several theories have been 
proposed to relate the elastic modulus of  porous 
materials to the number of  pores and their volume 
fraction. The first attempts to characterize the elastic 
response of a solid containing pores were based on a 
semi-empirical equation of  the lorm [1, 2, 3] E = E0 exp 
( -  b V), where E0 is the Young's modulus of a pore- 
free solid, V is the pore volume fraction and b is an 
empirical constant. This exponential equation was 
widely used to fit experimental data on porosity 
dependence of Young's modulus. 

Theoretical expressions for the effect of  porosity 
on Young's modulus have been derived by several 
investigators. Hill [4] and Budiansky [5] independently 
suggested a self-consistent method to describe the 
change of elastic constants with porosity. 

One approach to characterize the elastic behaviour 
of a solid containing porosity is to assume pores to 
take the shape ot nearly flat oblate spheroids, and 
treat them as a crack-like defect. Based on this argu- 
ment, numerous theoretical models have been pre- 
sented which take into account the effect of crack size 
and its density [6-9].  MacKenzie [9] was the first to 
recognize tne importance of  stress concentration in 
determining the elastic behaviour of solids under 
stress. 

More recent theories assume that the only distur- 
bances that affect the elastic properties of  a porous 
solid are pores of various shapes [1 O-14]. When inter- 
preting experimental data on the porosity dependence 
of Young's modulus it is worth pointing out that, 
when expressed in terms of  elastic strain on a stress 
strain curve, the introduction of  pores leads simul- 
taneously to the reduction of  Young's modulus and to 
an equivalent increase of  elastic strain for a given 
stress. One possible explanation for the increase of 

elastic strain is due to crack opening displacement 
caused by the presence of  radial and/or  annular cracks 
associated with pores. It is this concept on which the 
present theoretical model is based. 

When dealing with porous solids, it is important to 
recognize the significance of  both pores and cracks 
associated with pores. Such a c rack-pore  configura- 
tion was found to be the dominant failure precursor in 
a number of porous solids [15, 16]. It has been demon- 
strated experimentally [15] and theoretically [16] that 
the stress concentration due to the presence of  pores 
and the c rack-pore  stress field interaction effects are 
so large that they cannot be neglected. It is believed 
that these stresses also play an important role in deter- 
mining the overall elastic response of a solid contain- 
ing pores. The theoretical analysis presented in this 
paper is therefore based on the crack opening dis- 
placement and the stress concentration, where it is 
assumed that the additional elastic strain of a porous 
solid under stress comes from the opening of all cracks 
associated with pores. Based on this, an expression for 
the porosity dependence of Young's modulus is 
developed and compared with experimental data. 

2. Development of the model 
2.1. Cylindrical cavity 
Consider a solid containing randomly distributed, 
noninteracting, cylindrical cavities with two radial 
cracks, Fig. 1. The total di-zplacement at remote points 
is 

&or = ac+ &o (1) 

where A c is the displacement due to the presence of  
cracks and And is the displacement in the absence of  
cracks. The displacement due to the presence of cracks 
is [17] 

4crC 
Ac - E '  V~ (2) 
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Figure 1 Displacement at remote points of a solid containing cylin- 
drical cavity under applied stress. 

where a is the applied stress, C ( =  R + s) is the total 
crack length, R is the pore radius, s is the radial flaw 
size, 

V~ = -1 .071 + 0.250(C/b) - 0.357(C/b) 2 

+ 0.121(C/b) 3 - 0.047(C/b) 4 + O.O08(C/b)' 

- 1 . 0 7 1 ( C / b )  -1 In  (1 - C/b) ( 3 )  

E'  = E (plane stress), E'  = El(1 - v 2) (plane strain) 
and v is Poisson's ratio. For  the limiting case where 
C/b ~ O, and neglecting higher order terms beyond 
(C/b), Equation 2 reduces to the simple form 

3.14aC 2 
Ac - bE'  (4) 

The displacement of a solid containing no cracks is: 

~Y 
A n c =  ~ 2h (5) 

where h is the sample half length. The total strain of  
a solid containing N s ( = N / 2 h 2 b )  cracks per unit 
surface is 

Ato t O" [1 + 6.28N~(1 - v 2) C 2] (6) 
q = 2h = Eoo 

where E0 is the Young's modulus of a cavity-free solid, 
v0 is Poisson's ratio and N is the total number of  
cracks. Hence, the total strain of a solid containing 
cylindrical cavities with radial cracks is: 

q = s0 + 6.28aNs(1 - v 2) C 2 (7) 

where s 0 is the strain of  a crack-free solid. 
In developing Equation 7 it was assumed that the 

opening of all cracks is solely due to a remotely 
applied stress. However, for a cavity-crack configura- 

I l 1ol I 
Figure 2 (a) Stress concentration distribution around cavity in the 
absence of crack: (b) Annular or radial cracks emanating from the 
cavity surface. 

tion depicted in Fig. 2, the stress concentration is 
developed due to the presence of  a cavity, which is 
tensile at 0 = n/2 (see Fig. 2) and is represented by the 
expression [18] 

ao = a[1/2 (R/x)  2 + 3/2 (R/x)  4 + 1] (8) 

where x is the distance from the centre of the cavity 
and R is the cavity radius. The effect of stress con- 
centration due to the presence of  cylindrical cavities 
on the total strain is obtained by substituting a in 
Equation 7 by ao from Equation 8 

sc = s0 + 6.28N~a(1 -- v 2) R 211/2 + 3/2(1 + s/R) 2 

+ (1 + s/R):] (9) 

Hence, it follows from Equation 9 that the effective 
Young's modulus is 

E = E0{1 + 6.28N~(1 - v2)R2[1/2 + 3/2(1 + s/R) 2 

+ (1 + s/R)2]} ' (10) 

For  the limiting case ofs  ~ O, Equation 10 reduces to 
the simple form 

E = E0[1 + 18.84(1 - v2)Ns R2] 1 (11) 

An alternative approach to arriving at the expres- 
sion relating the Young's modulus to the crack density 
is the complience method. This procedure, shown in 
the Appendix, indicates that both crack opening and 
complience procedures are equally valid and lead to 
the same result (See Equations 4 and A6). 
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Figure 3 R o u n d  specimen wi th  cent ra l ly  loca ted  spher ical  pore  

subjected to ex te rna l  load,  P. 

2.2. Spherical cavity 
Another case of  interest is the three-dimensional 
spherical pore subjected to an external stress at infin- 
ity. The tensile stress distributed along the equator of  
a spherical cavity is [18] (for 0 = re/2): 

a0 = c~{[(4 -- 5v)/2(7 -- 5v)](R/x) 3 

+ [9/2(7 -- 5v)](R/x) s + 1} (12) 

The stress intensity factor (K~) for a penny-shaped 
crack of length, C, located in the centre of  a round 
specimen (Fig. 3) is [17] 

KI = 0-net(71:C) 1/2 V3 

where 

O ' n e  t - -  

and 

2 [1 V3 ;r 

(13) 

P P A = ltC 2 
7c(b 2 - C 2 )  ' 0- - -  7zb 2, 

(14) 

+ 1~2(C/b) - 5/8(C/b) 2 + 0.421(C/b) 31 

(15) 

Neglecting the higher order terms beyond (C/b) for 
C/b ~ O, the complience of a solid containing a single 
penny-shaped crack may be obtained by combining 
Equations 13, A1 and A2 to yield 

16 
dQ - ~ YZd( (16) 

where f = C/b. Integration of  Equation 16 yields 

Q = 16/3rc2bE" (C/b) 3 (17) 

The displacement of a solid at remote points due to the 
presence of  a single isolated crack is 

A c = QP = 16aC3/3bE'Tz 2 (18) 

Now, the total strain due to N v cracks per unit volume 
is (from Equations 1 and 5 and Fig. 3) 

~p = &/h = 0-[l/E0 + 16(1 - v2)NPC3/3Eo] 

(19) 

which leads to the equation relating the total strain to 
the crack density and crack length 

Ep = e 0 + 16o-(1 - v2)NPC3/3Eo (20) 

From Equation 20, it can easily be shown that the 
effective Young's modulus is 

E = E0 [1 + 16(1 - v2)NPC3/3] ' (21) 

which recovers the result obtained by Hasselman and 
Singh [23] employing the energy balance criteria. 

The effect of  stress concentration on elastic strain of 
a solid containing spherical pores can now be obtained 
by replacing a in Equation 20 by 0-o from Equation 12 
to yield 

16a(1 - v2)N-P(R + s) 3 
~p = e 0 +  

3E0 

F 4  -- 5v R 3 
x L~-(7 - ~v) (R + ~)~ 

9 R 5 ] 
+ 2 ( 7 -  5v)(R + s) 5 + 1 (22) 

This immediately leads to an expression for the effec- 
tive Young's modulus 

{ 16NP(1 - v2)R3[ 
E = Eo 1 + j (1 + s/R) 3 

9 4 : 5v .l~-' 
+ 2(7 - 5v)(1 + s/R) 2 + 2(7 - 5v)_lJ 

(23) 

Assuming that the stress field interaction of neighbour- 
ing pores and cracks is negligible, it is of interest now to 
develop the relationship between the Young's modulus 
and the pore volume fraction. The relationship between 
the number of pores per unit volume, N v, and their 
volume fraction (9 9)is given by the expression 

3V 
N p - -  (24) 

4~R 3 

Combining Equations 23 and 24 results in 

{ 12V(1 - - v 2 ) [  
E = E0 1 + (1 + s/R) 3 

9 4 - 5v-11,-' 
+ 2(7 - s~)(1 + ~/R) = + 2(7 - 5v)j) 

(25) 

For a solid possessing very small angular flaws 
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Figure 4 Predicted change of Young's modulus (from Equation 25) 
with porosity for given sir values and v = 0.2. sir = (a) 0.001, 
(b) 0.5, (e) 1, (d) 2. 

(s --* 0), Equation 25 simplifies to (for v = 0.2) 

E = E0 [1 + 24V(1 - v2)/n] -~ (26) 

Equation 26 correctly predicts the extreme case of  
V --* 0 where the Young's modulus approaches that 
of a pore-free solid. For  the other extreme where 
V--* 1, the Young's modulus should be equal to 
zero. However, Equation 25 shows that at V --. 1 the 
Young's modulus approaches a small but finite value 
instead of zero. To satisfy this later boundary con- 
dition Equation 25 may be modified to read 

_e = (1- V)/l + 12v(1--v2) (1 + s / R )  3 
Eo 

I 

9 4 , v l }  
+ 2(7 - 5v)(1 + siR) 2 + 2(7 - 5v) 

(27) 

Fig. 4 illustrates the change of Young's modulus with 
pore volume fraction and siR. Although Fig. 4 and 
Equation 27 show a strong s i r  dependence of 
Young's modulus at all levels of  porosity, the most 
significant drop of Young's modulus appears to occur 
at low and intermediate levels of porosity ( < 30 vol %). 

When comparing Equations I0 and  27, it is clear 
that both equations exhibit the same fundamental 
change of  Young's modulus with volume fraction of  
cavities. Nevertheless, Equation 10 shows somewhat 
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Figure 5 Comparison between predicted and measured values for 
Young's modulus in a polycrystalline alumina. The data are collec- 
ted from eight different sources [3]. E 0 was obtained from linear 
extrapolation at V = 0. (e) Experimental result, (a) Equation 25, 
sir = 0.001, (b) Equation 27, sir = 0.001. 

greater sensitivity of elastic modulus to the presence of  
cylindrical cavities. 

3. D i s c u s s i o n  
As shown by the present analysis, the elastic response 
of a solid containing pores is governed by the number 
of pores or their volume fraction, the pore size and the 
s/R ratio. Because of the very fast decay of the stress 
concentration with distance from the surface of the 
cavity, its effect on elastic modulus is most significant 
at small values of  siR. At large s/R ratios (sir > 
1 to 2), such as may be the case with highly cracked 
solids, the contribution of  localized stresses becomes 
negligible and the porous solid exhibits the same 
general behaviour as if it contained no cavities. This 
means that, for a given radial/annular flaw, a solid 
that contains a large number of  small cavities will have 
its Young's modulus less affected by the presence of  
cavities compared to a solid with a small number of 
large cavities. It can be inferred from the present 
analysis that the most advantageous system in pre- 
serving a high value for its Young's modulus, is the 
one that contains no radial or annular cracks. 

For  the comparison of the theory with experiments, 
Fig. 5 displays the experimental data for the porosity 
dependence of  Young's modulus in a polycrystalline 
alumina together with calculated values. In calculat- 
ing the theoretical values for elastic modulus, a con- 
stant s/R was assumed. Although experimental data 
on the relationship between the pore size and the 
radial (annular) flaw size are limited [15], there is no 
evidence that the length of  a radial crack is limited by, 
or related to the pore size. 

It is more realistic to expect some form of relation- 
ship between the radial (annular) flaw size, and the 
grain size. In spite of  the fact that in most polycrystal- 
line brittle solids a unique, well defined relationship 
between the flaw size and the grain size does not exist 
[22], a much stronger effect of  grain size on elastic 
modulus is anticipated. This may particularily be sig- 
nificant with anisotropic polycrystalline solids where 
extensive spontaneous cracking occurs when the grain 
size exceeds a certain critical value [22]. Very weak or 
no connection between the grain size and the flaw size 
is expected to exist in thermally isotropic systems 
where the grain size and the flaw size are independent 
parameters [22]. In systems where the equality between 
the grain and the flaw size exists, the contribution of  
grain size can be included into the equation for the 
porosity dependence of Young's modulus by writing 
s = F where F is the grain s ize .  

To further test the validity of  the present approach, 
Fig. 6 compares the computed and measured values 
for Young's modulus as a function of pore volume frac- 
tion in a polycrystalline spinel [21]. Close examination 
of Fig. 6 indicates that, for low porosity ( < 20%) the 
theory slightly underestimates the measured Young's 
modulus, whereas at intermediate porosity levels 
(20-40%),  Equation 25 appears to fit experimental 
data reasonably well. Another note of interest is the 
much better agreement between the theory and experi- 
ments at low s/R, indicating that large radial/annular 
cracks are not anticipated in a porous polycrystalline 
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Figure 6 Computed  and measured variation of  Young 's  modulus  as 
a function of porosity in a polycrystalline spinel [21]. E 0 was obtained 
from linear extrapolation at V = 0. (e)  Experimental results (a) 
Equat ion 25, s i r  = 0.001, (b) Equat ion 27, s i r  = 0.001. 

spinel. This certainly does not apply to highly aniso- 
tropic polycrystalline ceramics where extensive spon- 
taneous cracking frequently occurs even prior to load 
application. 

So far, the discussion has centred on the effect of 
spherical voids on elastic modulus. Due to the lack of 
experimental data on the effect of cylindrical cavities 
on elastic modulus, the direct correlation between 
predicted and measured values is not possible. How- 
ever, it is immediately evident from Equations 10 and 
23 that, for a given crack density, somewhat more 
severe degradation of Young's modulus is expected in 
a solid containing cylindrical cavities. Furthermore, 
this finding also serves to suggest that the cavity shape 
has a certain role in determining the elastic response of 
a porous solid as discussed elsewhere [12]. However, 
the complexity of the stress distribution around a 
cavity of arbitrary shape (other than spherical or cylin- 
drical) precludes rigorous evaluation of the problem. 

Although, the present theoretical analysis is valid 
for any s /R  value, for the limiting case s /R  --* O, the 
opening of crack-like defects such as pores with annular 
flaws, and the elastic response of a solid containing 
cavities is expected to be governed by the condition 
of crack initiation rather than crack extension. This 
mechanism may be of certain significance in glasses 
where pores appear to exhibit rather smooth surfaces 
with very small or no radial cracks present [15], at least 
prior to stress application. In polycrystalline ceramics, 
on the other hand, radial flaws of various length 
appear to be always associated with pores regardless 
of other microstructural features, forcing pores to 
behave like sharp cracks [15]. 

4. Conclusions 
A crack opening is found to be a useful approach 
in developing the relationship between the Young's 
modulus and the volume fraction porosity. It is found 
that when a porous solid is subjected to uniform exter- 
nal stress, its displacement, and consequently its 
elastic strain at remote points (from the crack), is 
governed by the opening of all radial or annular 
cracks associated with cavities. This crack opening is 
further increased by the action of stress concentration 
induced by the presence of cavities. 

Due to different distributions of stresses around 

spherical and cylindrical cavities, the Young's modu- 
lus is found to be more sensitive to the presence of 
cylindrical cavities. 

Appendix 
The relationship between the strain energy release 
rate, G, the load, P, and complience, Q, is given by the 
well known expression 

p2 8Q 
G - (AI) 

2 8A 

where A is the crack surface area. 
From the linear elastic fracture mechanics, the 

strain energy release rate is related to the stress inten- 
sity factor via the equation 

K 2 
G - (A2) 

E'  

The stress intensity factor of a crack as shown in 
Fig. 1 [17] is 

K = o'(rcC) 1/2 V2 (A3) 

where V 2 = 1 + 0.128(C/b) - 0.288(C/b) 2 + 
1.525(C/b) 3. For the limiting case C/b--* 0 and 
neglecting the higher order terms beyond (C/b), 
Equation A3 assumes the form 

K = a (nC)  1/2 [1 + 0.128(C/b)] (A4) 

Also, from Fig. 1, P = a(B2b) and A = B2C.  From 
Equations A1 and A2 

2 K  2 
dQ - p2 E '  dA and Q = 3.14aC2/2Bb2E" 

(A5) 

where B is the sample thickness. Finally, we arrive at 
the expression for the displacement of a solid due to 
the presence of cracks 

Ac = Q P  = 3.14aC2/bE ' (A6) 

Equation A6 is identical with Equation 4 which justi- 
fies the use of complience method to relate the dis- 
placement at remote points with the crack opening. 

References 
1. R. M. SPRIGGS,  J. Amer. Ceram. Soc. 44 (1961) 628. 
2. R. M. SPRIGGS,  L. A, BRISSETTE and T. VASILOS, 

ibid. 45 (1962) 400. 
3. F. P. K N U D S E N ,  ibid. 45 (1962) 94. 
4. R. HILL,  J. Mech. Phys. Solids 13 (1962) 213. 
5. B. BUDIANSKY,  ibid. 13 (1965) 223. 
6. J. B. WALSH,  J. Geof Research 70 (1965) 381. 
7. R. G. O ' C O N N E L L  and B. BUDIANSKY,  ibid. 79 

(1974) 5412. 
8. W. M. BRUNER,  ibid. 81 (1976) 2573. 
9. J. K. M A C K E N Z I E ,  Proc. Phys. Soc. (Lond.) 63B (1950) 

2. 
10. R. L. S A L G A N I K ,  Mech. Solids 8 (1973) 135. 
11. L. F. NIELSEN,  J. Amer. Ceram. Soc. 67 (1984) 93. 
12. E. A. DEAN,  ibid. 66 (1983) 847. 
13. R. W. Z I M M E R M A N ,  Int. J. Rock. Mech. Min. Sci. & 

Geomech. Abst. 21 (1984) 339. 
14. C. W. BERT, jr. Mater. Sci. 20 (1985) 2220. 
15. R. W. RICE, ibid. 19 (1984)895. 
16. V. D. KRSTIC,  Acta Metall. 33 (1985) 521. 

2885 



17. H. TADA,  P. C. PARIS and G. R. IRWIN,  "The Stress 
Analysis of  Cracks Handbook"  (Del Research Corporation, 
Hellertown, Pennsylvania, 1973). 

18. J. N. GOODIER,  J. AppL Mech. 1 (1933) 39. 
19. R. L. F U L L M A N ,  Trans. A I M E  197 (1953) 447. 
20. P. C. PARIS and G. C. SIH, ASTM STP 381 (American 

Society of  Testing and Materials, Philadelphia, 1965) 
pp. 30 83. 

21. D. F. PORTER,  J. S. REED and D. LEWIS III, J. 
Amer. Ceram. Soe. 60 (1977) 345. 

22. V. D. KRSTIC,  ibid. 67 (1984) 589. 
23. D. P. H. HASSELMAN and J . P .  SINGH, Amer. 

Ceram. Soc. Bull. 58 (1976) 856. 

Received 22 September 
and accepted 15 December 1986 

2886 


